114 research outputs found

    Named Functions at the Edge

    Get PDF
    As end-user and edge-network devices are becoming ever more powerful, they are producing ever increasing amounts of data. Pulling all this data into the cloud for processing is impossible, not only due to its enormous volume, but also due to the stringent latency requirements of many applications. Instead, we argue that end-user and edge-network devices should collectively form edge computing swarms and complement the cloud with their storage and processing resources. This shift from centralized to edge clouds has the potential to open new horizons for application development, supporting new low-latency services and, ultimately, creating new markets for storage and processing resources. To realize this vision, we propose Named Functions at the Edge (NFE), a platform where functions can i) be identified through a routable name, ii) be requested and moved (as data objects) to process data on demand at edge nodes, iii) pull raw or anonymized data from sensors and devices, iv) securely and privately return their results to the invoker and v) compensate each party for use of their data, storage, communication or computing resources via tracking and accountability mechanisms. We use an emergency evacuation application to motivate the need for NFE and demonstrate its potential

    A keyword-based ICN-IoT platform

    Get PDF
    Information-Centric Networking (ICN) has been proposed as a promising solution for the Internet of Things (IoT), due to its focus on naming data, rather than endpoints, which can greatly simplify applications. The hierarchical naming of the Named-Data Networking (NDN) architecture can be used to name groups of data values, for example, all temperature sensors in a building. However, the use of a single naming hierarchy for all kinds of different applications is inflexible. Moreover, IoT data are typically retrieved from multiple sources at the same time, allowing applications to aggregate similar information items, something not natively supported by NDN. To this end, in this paper we propose (a) locating IoT data using (unordered) keywords combined with NDN names and (b) processing multiple such items at the edge of the network with arbitrary functions. We describe and evaluate three different strategies for retrieving data and placing the calculations in the edge IoT network, thus combining connectivity, storage and computing

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance

    Link layer support for quality of service on wireless Internet links

    Full text link

    A network aware resource discovery service (a performance evaluation study)

    Get PDF
    International audienceInternet in recent years has become a huge set of channels for content distribution highlighting limits and inefficiencies of the current protocol suite originally designed for host-to-host communication. In this paper we exploit recent advances in Information Centric Networks in the attempt to reshape the actual Internet infrastructure from a host-centric to a name-centric paradigm where the focus is on named data instead of machine name hosting those data. In particular, we pro- pose a Content Name System Service that provides a new network aware Content Discovery Service. The CNS behavior and architecture uses the BGP inter-domain routing information. In particular, the service registers and discovers resource names in each Autonomous System: contents are discovered by searching through the augmented AS graph represen- tation classifying ASes into customer, provider, and peering, as the BGP protocol does.Performance of CNS can be characterized by the fraction of Autonomous Systems that successfully locate a requested content and by the average number of CNS Servers explored during the search phase. A C-based simulator of CNS is developed and is run over real ASes topologies provided by the Center for Applied Internet Data Analysis to provide estimates of both performance indexes. Preliminary performance and sensitivity results show the CNS approach is promising and can be efficiently implemented by incrementally deploying CNS Servers

    TCP NJ+: Packet Loss Differentiated Transmission Mechanism Robust to High BER Environments

    Full text link

    ICN as Network Infrastructure for Multi-Sensory Devices: Local Domain Service Discovery for ICN-based IoT Environments

    Get PDF
    Information Centric Networking (ICN) is an emerging research topic aiming at shifting the Internet from its current host-centric paradigm towards an approach centred around content, which enables the direct retrieval of information objects in a secure, reliable, scalable, and efficient way. The exposure of ICN to scenarios other than static content distribution is a growing research topic, promising to extend the impact of ICN to a broader scale. In this context, particular attention has been given to the application of ICN in Internet of Things (IoT) environments. The current paper, by focusing on local domain IoT scenarios, such as multi-sensory Machine to Machine environments, discusses the challenges that ICN, particularly Interest-based solutions, impose to service discovery. This work proposes a service discovery mechanism for such scenarios, relying on an alternative forwarding pipeline for supporting its core operations. The proposed mechanism is validated through a proof-of-concept prototype, developed on top of the Named Data Networking ICN architecture, with results showcasing the benefits of our solution for discovering services within a collision domain. © 2017 Springer Science+Business Media New Yor

    Sensor Data Collection through Unmanned Aircraft Gateways

    Full text link
    Current addressing and service discovery schemes in mobile networks are not well-suited to multihop disconnected networks. This paper describes an implementation of a highly mobile ad-hoc network (MANET) that may never experience end-to-end connectivity. Spe-cial gateway nodes are described which are responsible for intelligently routing messages to their intended destination(s). These gateway nodes qualify their links and announce their status to the MANET, a simple approach to service discovery that is effective in this implementation. This implementation has been tested in an outdoor environment. I

    Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks

    Get PDF
    A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi-radio mesh network, showing that the mesh network can meet the requirements for high quality video transmissions
    • …
    corecore